3 Mechanical Services – Noise and Vibration

Refer also to acoustic details provided in Part G - Appendix I.

1 Noise Criteria

Internal Noise levels

Noise from mechanical plant inside the development shall not exceed the levels given below. Unless stated otherwise, the noise level criteria shall not be exceeded with the plant operating under normal operating conditions, and at start-up for intermittently operating plant items.

Allow for any additional treatment to fully comply with the internal and external noise level requirements, including noise from diffusers, grilles and louvres, ductwork and risers notwithstanding the equipment noise ratings indicated in the mechanical services brief or the acoustic treatments indicated in the mechanical services specification or drawings.

Allowable noise levels are listed in the table below.

<table>
<thead>
<tr>
<th>Space/Activity Type</th>
<th>Recommended Internal Reverberation Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wards</td>
<td>35</td>
</tr>
<tr>
<td>Consult Rooms, Meeting, Procedure, Private</td>
<td>40</td>
</tr>
<tr>
<td>Office, Interview</td>
<td></td>
</tr>
<tr>
<td>Operating Theatre, Open plan office, Staff</td>
<td>45</td>
</tr>
<tr>
<td>Room, Recovery</td>
<td></td>
</tr>
<tr>
<td>Lobby / Reception</td>
<td>45</td>
</tr>
<tr>
<td>Toilets / Store Rooms</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 5 – Recommended Design Internal Noise Level Criteria for different areas

Noise within rooms shall be free of tones or other undesirable characteristics.

Noise during a Fire Emergency

Noise from all plant during a fire emergency shall comply with the requirements of AS 1668. AS 1668 requires that noise levels during a fire emergency not exceed 80 dB(A) within fire isolated passageways or 65 dB(A) within occupied spaces. Noise levels inside the fire control room shall not exceed 65dB(A) during a fire emergency.

External Noise Levels

Noise levels emitted by the mechanical plant at all property boundaries and nearby buildings on adjacent properties shall meet the requirements of local Authorities. If specific requirements are not available, the following can be considered as the minimum standard.

INP - Intrusiveness Assessment

Intrusiveness criteria permit noise generation to be no more than 5dB(A) above existing background noise levels.
INP - Amenity Assessment

The Amenity criteria set additional criteria based on the land use of the noise sensitive receivers. Amenity criteria are as follows:

<table>
<thead>
<tr>
<th>Receiver Location</th>
<th>Landy Type</th>
<th>Time of Day</th>
<th>Amenity Noise Objective dB(A)Leq(Period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Potentially Affected Residential</td>
<td>Suburban</td>
<td>Day Time (7am - 6pm)</td>
<td>55</td>
</tr>
<tr>
<td>Properties</td>
<td></td>
<td>Evening (6pm - 10pm)</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Night (10pm - 7am)</td>
<td>40</td>
</tr>
<tr>
<td>Commercial</td>
<td>All</td>
<td>When in use</td>
<td>65</td>
</tr>
</tbody>
</table>

Outdoor Areas on the Development Site

Noise emissions to external areas on the site are to comply with the specified levels below:
- Public Spaces (areas where people may sit): <55dB(A)Leq
- Public Spaces (thoroughfares): <60dB(A)Leq

Noise Generated by Air Distribution Systems

Noise from the air distribution system shall be minimised by:
- Selecting grilles, diffusers, dampers and accessories to meet the specified noise levels.
- Balancing the system using dampers on duct branches, with dampers at grilles being used for minor adjustment of air volumes. Where excessive noise levels are due to noise generated at dampers near grilles, the branch dampers shall be readjusted to eliminate excessive dampering and noise at the grilles.
- Installing ductwork with a minimum number of bends, offsets, etc. Flexible ducts should not be kinked or have excessively bends, particularly near grilles, etc. Ensure there are no protrusions inside the duct that could generate noise. Unless indicated otherwise, install turning vanes in tee’s and bends or use long radius bends to minimise turbulence.
- Seal duct joints adequately so there is no noise resulting from air leakage.
- Ensure plenums behind supply and exhaust grilles are correctly sized to ensure even flow over the grille/diffuser.
- Flexible duct diameters shall be selected so as not to exceed the following velocities:

<table>
<thead>
<tr>
<th>Space Noise Criterion dB(A)</th>
<th>Maximum Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>2.75</td>
</tr>
</tbody>
</table>
3 Plant Noise Levels

Adjust and balance all systems so that excessive noise is not created and the scheduled internal and external noise levels are complied with.

4 Testing on Completion

Following the installation of mechanical plant and equipment and their subsequent treatments, a qualified Acoustic Consultant is to carry out internal noise level measurements within various rooms of the hospital development and perform external compliance measurements to confirm compliance with the criteria outlined in the sections above.

The locations selected for measurement shall include all critical occupancies close to plant including: residences located near plant rooms; balconies; roof terraces; carpark areas, lobbies/corridors and gymnasium.

Noise levels should be measured in the worst affected part of the room/occupancy, at least 1.5m from the grilles located within the room (or the middle of the room, if this is not possible).

5 Vibration Criteria

General Areas

Vibration levels caused by activities on the site (including plant) should not exceed the levels specified by the local Authority at any place of different occupancy at and around the site.

When such standard or guidelines is not available, the recommended maximum weighted vibration levels for continuous vibration sources, such as mechanical services plant, and for impulsive vibration sources found in British Standard BS 6472:2008 “Evaluation of human exposure to vibration in buildings (1 Hz to 80 Hz)” can be referenced. The weighted curves in this BS includes guidance for the assessment of human response to building vibration including continuous vibrations caused by mechanical plant and equipment.

Human response to vibration has been shown to be biased at particular frequencies which are related to the orientation of the person. This standard provides curves of equal annoyance for various orientations. These curves are applied as correction filters such that an overall weighted acceleration level is obtained. As the orientation of the resident is unknown or varying the weighting filter used is based on the combined base curve as given in ISO 2631 & Australian Standard 2670 “Evaluation of Human Exposure to Vibration and Shock in Buildings (1 to 80Hz)” which represents the worst case of the X, Y and Z axes. Filtered measurements are made in all three co-ordinate axes and the highest value axis used.

The standard assesses the annoyance of intermittent vibration (which are generally associated with vibrations induced by trains etc.) by using the Vibration Dose Value (VDV). Alternatively the VDV may be estimated by the eVDV which is derived by a simpler calculation using an empirical factor. The VDV or eVDV is calculated for the two periods of the day being the “Daytime” (7am-10pm) and “Night time” (10pm-7am).

The vibration limits recommended for maintaining human comfort in residences and offices are shown in the table below.

<table>
<thead>
<tr>
<th>Location</th>
<th>Maximum z-axis weighted RMS vibration acceleration (m/s²)</th>
<th>Vibration Dose Value (m/s1.75)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continuous</td>
<td>Impulsive</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8 – Flexible Ducting – Recommended Air Speeds
<table>
<thead>
<tr>
<th>Inpatient Unit/ ICU/ CCU</th>
<th>0.010</th>
<th>0.30</th>
<th>0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office areas</td>
<td>0.020</td>
<td>0.64</td>
<td>0.40</td>
</tr>
<tr>
<td>Workshops</td>
<td>0.040</td>
<td>0.64</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Table 9 – Vibration Limits for different types of occupancy

Critical Areas

Recommended vibration criteria for critical areas of the hospital development are as follows:

- Theatres – R1 (“Operating Room”) curve.

Relevant curves are extracted below.

Note:

- When the vibration source is constant (as generated by plant), the rms (average) level is to be used.
- When the vibration source is intermittent (as generated by footfall during normal walking), the rms (max 1 second) level is to be used.

These are the proposed test scenarios for any future compliance measurement.
6 Ameliorative Treatments to Structure Borne Noise and Vibration

Minimise the transmission of vibration to the building structure to ensure the noise and vibration criteria are achieved by:

- Statically and dynamically balancing rotating plant and equipment. Out of balance not to exceed 0.03mm kg/kg of rotating element after installation. Where specified, provide balancing test certificates.
- Providing isolation mounts or hangers for vibrating plant and equipment.
- Providing inertia blocks where indicated to limit the vibration amplitude.
- Isolating piping, electrical conduit, etc subject to vibration from the building structure.
- Providing flexible connections where ducts and piping is connected to vibrating plant and machinery.

Anti-Vibration Mounts and Isolators

Selection of Equipment Isolation Mounts

Select isolation mount type and minimum static deflection according to the following table (refer below for isolator types).

<table>
<thead>
<tr>
<th>Plant</th>
<th>Isolator type</th>
<th>Minimum static deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-line Centrifugal Fans and Small Axial Fans</td>
<td>M3/H1</td>
<td>10 mm</td>
</tr>
<tr>
<td>Axial Fans (>450mm diameter), Centrifugal Fans and Pumps</td>
<td>M4</td>
<td>25 mm</td>
</tr>
<tr>
<td>Fan/coil and air conditioning units</td>
<td>M1/H1/HE1</td>
<td>2 mm</td>
</tr>
<tr>
<td>Cooling Towers</td>
<td>M2</td>
<td>6 mm</td>
</tr>
<tr>
<td>Boiler</td>
<td>M1</td>
<td>6 mm</td>
</tr>
<tr>
<td>Air-conditioning condenser Units</td>
<td>M1</td>
<td>2 mm</td>
</tr>
<tr>
<td>Chillers</td>
<td>M4</td>
<td>25 mm* with 17 mm Super shear flex base pad</td>
</tr>
<tr>
<td>Pumps</td>
<td>M4</td>
<td>25 mm*</td>
</tr>
<tr>
<td>Air Handling Unit Casing (fan internally spring using 25mm static deflection fan)</td>
<td>M1/H1/HE1</td>
<td>2 mm</td>
</tr>
</tbody>
</table>

*Plant to be installed on isolators as specified above. Isolators are then to be installed on an isolated plinth (plinth to be separated from structural slab using shear flex pads).

Piping Isolation Mounts

Piping within 20m of the generators (tri-gen or diesel), pumps or chillers shall be vibration isolated using type M4 or H2, 25mm static deflection isolators.

All hangers used to support chiller pipework must incorporate a neoprene pad (as per H2).

Isolate any other small diameter piping runouts to fan coil units within 20m of the pumps or chillers using a flexible 12mm thick foam sleeve between the pipe and the clamp similar to Poron 4701-12-20250-1604 (2 layers) (suppliers: Mason Grogan 748 3838) fitted between the pipe and the clamp. The clamp should then be tightened just sufficiently to hold the pipe, but not over tightened.

Isolation Mount Types

Type M1 - Waffle Pad Mounts
Waffle pad mounts shall be: minimum 17mm thick neoprene rubber (nitrile rubber where oil contamination is possible); cross ribbed with alternately raised ribs on both faces of the pad; loaded within the load range of the isolator with a minimum static deflection of 1.5mm.

Type M2 - Multiple Layer Waffle Pad Mounts
Multiple layer waffle pad mounts incorporating; specified number of layers of Type M1 Waffle Pad Mount; 1.5mm thick metal shim plate between the pad layers; minimum 1.5mm static deflection per layer.

Type M3 - Neoprene Mounts
Neoprene mounts should be selected to give the static deflections under load nominated for the item of plant and incorporate: separate steel top and base plates completely embedded in elastomer; elastomer colour coded for identification of load rating; non-skid mounting surfaces; bolt holes for bolting down plant.

Type M4 - Spring/Neoprene Mounts
Spring/neoprene mounts should be selected to give the static deflections under load nominated for the item of plant and: be laterally stable without any housing or other lateral support; be capable of an additional travel to solid of at least 50% of the rated static deflection; incorporate a levelling facility; a spring diameter not less than 0.8 of the loaded height; incorporate a 6mm thick neoprene base pad to isolate acoustical frequencies. Isolators exposed to weather should have zinc plated springs and housings coated with a flexible epoxy to prevent corrosion.

Isolation Hanger Types

Type HE1 - Neoprene Hanger Elements
Neoprene hanger elements should be selected to give the static deflections under load nominated for the item of plant and incorporate: separate steel top and base plates completely embedded in elastomer which should interlock in the event of fire or mechanical failure; elastomer colour coded for identification of load rating; hole for locating hanger and a lip to locate the element within in the mounting hole.

Type H1 - Neoprene Hangers
Neoprene hanger elements should be selected to give the static deflections under load nominated for the item of plant and incorporate: Type HE1 - Neoprene Hanger Element located within a galvanised steel cage with provision for threaded hanger rods to screw into the hanger element; provide sufficient clearance around the threaded hanger rod to ensure it cannot touch the hanger cage.

Type H2 - Spring/Neoprene Hangers
Spring/neoprene hangers should be selected to give the static deflections under load nominated for the item of plant and: be laterally stable without any housing or other lateral support; be housed in a galvanised steel cage; be capable of an additional travel to solid of at least 50% of the rated static deflection; incorporate a levelling facility; a spring diameter not less than 0.8 of the loaded height; incorporate a neoprene base pad to isolate acoustical frequencies. Isolators exposed to weather should have zinc plated springs and housings coated with a flexible epoxy to prevent corrosion, and self-draining cups.

Equipment Bases
Generally - Mount equipment on rigid bases. The bases shall be sufficiently rigid not to deform under the weight of the machinery or during operation and reduce the effectiveness of the isolation mounts.

Tri Gen, Diesel generators, Chillers and pumps to be mounted on strip plinths which themselves are isolated from the structural slab using 10mm acoustic matting.

Installation of Vibration Isolation Mounts
Level the mounts once the equipment is fully loaded in its operating condition with a minimum clearance between the machine and the structure of 20mm, and adjusted to ensure that the isolators are loaded correctly. Ensure that the isolators are not bridged by mounting bolts or contact between any part of the machine or an unisolated part of the isolation mounts and the structure.

Select the number and spacing of the mountings to minimise machine rocking. Consider static and dynamic forces during operation and start-up when selecting the mounts.

Where there is a possibility of significant lateral loads occurring use hold down bolts, lateral restraints, or housed mounts to locate equipment.

7 Penetrations

General

Duct, pipe and electrical penetrations through walls, floors etc shall not:
- Decrease the required sound rating isolation rating of the wall, floor, ceiling, etc.
- Allow the transmission of vibration from pipes and ducts to the wall, floor, etc.

Do not penetrate full height walls with flexible ducts. Where ducts pass through above ceiling barriers or full height walls, the main sheet metal duct should be taken through the penetration to over the room served by the flexible duct, and the flexible duct runout to the grille connected. Alternatively, the flexible duct may be drawn through a 700mm long sheet metal sleeve that is grouted into the wall. An insulated 4 zero fire rated flexible duct should be used and the outside diameter of the sleeve should be the same as the flexible duct outside diameter.

Treat penetrations in wet area ceilings so as not to decrease the ceiling sound rating performance. This will require, as a minimum, the use of minimum 1m length of 25mm insulated four zero rated acoustic flexible ducting with an inner aluminium fabric core and outer aluminium wrapping to connect the rigid sheet metal ducting to the grille.

Pipe Penetrations

Seal pipes penetrating slabs or walls, as follows:

<table>
<thead>
<tr>
<th>Project noise criterion in adjacent spaces</th>
<th>Seal type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within 20m of a pump and condenser water pipes</td>
<td>Type PB seal</td>
</tr>
<tr>
<td>Other pipes including hot and cold water</td>
<td>Type PA or PB seal</td>
</tr>
</tbody>
</table>

Table 11 – Pipe Penetration Seal Types

Where the building element penetrated consists of one or more leaves then all leaves shall be acoustically sealed.

Duct Penetrations

Seal ducts penetrating slabs, walls and above ceiling baffles as follows:

<table>
<thead>
<tr>
<th>Spaces</th>
<th>Wall/floor construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Masonry</td>
</tr>
<tr>
<td>All</td>
<td>Plasterboard</td>
</tr>
</tbody>
</table>

Table 12 – Pipe Penetration Seal Types

Where the building element penetrated consists of one or more leaves then all leaves shall be acoustically sealed.
8 Silencers and Internally Lined Ducting - General

Lined Ducting

Internal duct insulation should be of a resin bonded mineral wool insulation in a batt or board form having a minimum density of 32kg/m³. Lining acoustic absorption shall exceed the following performance:

<table>
<thead>
<tr>
<th>Insulation Thickness</th>
<th>125Hz</th>
<th>250Hz</th>
<th>500Hz</th>
<th>1kHz</th>
<th>2kHz</th>
<th>4kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>25mm</td>
<td>0.08</td>
<td>0.30</td>
<td>0.64</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>50mm</td>
<td>0.35</td>
<td>0.72</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>75mm</td>
<td>0.45</td>
<td>0.8</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>100mm</td>
<td>0.5</td>
<td>0.9</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 13 – Internal Duct Insulation

Insulation shall be either factory faced with perforated aluminium foil similar to Sisilation 450 or faced with 30% open area perforated zincanneal steel sheet. Perforated steel sheet shall be used whenever airflow velocities in the duct exceed 10m/s, or where specified elsewhere.

Flexible Ducting

All flexible ducting for air-conditioning to be 4 zero fire rated acoustic flexible duct equal to Bradford Acoustiflex with minimum 25mm thick insulation and minimum 1.5m length.

Silencers

Performance

Unless stated otherwise comply with the scheduled minimum silencer performance requirements for insertion loss, airflow pressure drop and regenerated noise.

Construction

General

Acoustic silencers shall be manufactured by a specialist manufacturer approved by the acoustic consultant and shall comprise:

- A minimum 1.6mm thick galvanised outer casing, stiffened as required to ensure that deformation of the silencer does not occur during installation and operation.
- Acoustically absorbent internal splitters constructed of perforated zincanneal steel sheet with acoustically absorbent, heavy density mineral fibre infill. The ends of the splitters shall be shaped to minimise airflow resistance and regenerated noise.
- Heavy gauge flanges where the silencer is to be connected to ducting. Flanges shall be corrosion protected with an approved finish.

Allow for duct transition sections before and after the silencers, if required. Select and install silencers to ensure that airflow generated noise levels do not cause exceedances of the specified levels in Section 3.1. Where silencers are installed in risers, behind louvres, etc seal around the perimeter of the silencer to the building opening with minimum 1.6mm thick sheet metal, fixed and caulked in a similar to that indicated in the “PB” duct penetration detail.

Silencers for Kitchen Exhaust Ducts and Similar

Wherever possible, quiet running kitchen exhaust fans are to be selected for kitchen exhausts to avoid the need for silencer treatment. Where required, silencers used in kitchen exhaust ducts or other ducts carrying contaminated air shall be have a 12µm thick Melinex sheet between the
splitter perforated metal facings and the absorptive infill to prevent the ingress of grease, dirt, etc into the infill material. Connect silencers to ductwork and maintain access so that the silencers are easily removable for cleaning.

Silencers and Internally Lined Ductwork Exposed to Moisture

Use hydrophobic grade rockwool absorbent lining faced with perforated zincanneal steel sheet in all silencers and all internally insulated ductwork carrying moisture laden air or that are internally exposed to the weather. Alternatively, use acceptable equivalent insulation with factory applied weatherproof acoustically transparent facing.

9 Electrical

Belt Driven Plant

Fit belt driven intermittently operating plant having motors rated at greater than 2.5kW with motor starters that limit the build-up in motor speed at start-up. These are required to eliminate the possibility (especially in the future after belt wear has occurred) of belt squeal being audible in occupied spaces having a noise criterion of 45dB(A) or lower, on adjacent properties and on residential terraces/external spaces.

Electrical Wiring

Individual electrical cables can be sealed with fire-rated intumescent, low modulus, one component and Class A polyurethane sealant. Bunches of cables shall be drawn through a 5mm thick, 600mm long PVC conduit packed with polyester fibre, fibreglass or rockwool insulation. Seal around the conduit by filling with a non-shrinking grout.

10 Contactors/Starters/Controllers

Noise from contactors, starters and controllers shall be inaudible inside rooms having a noise of 45dB(A) or lower, on adjacent properties and on residential terraces/external spaces. Provide enclosures around these items and/or vibration isolate the items from building elements where they may give rise to the transmission of structure-borne noise.

![Figure 5 – Type PA Pipe Seal](image)
25mm thick rockwool sectional pipe sleeve insulation around pipe. Rockwool is to be encapsulated to prevent loss of fibers.

Figure 6 – Type PB Pipe Seal

1.2mm thick steel or copper sleeve around insulation grouted into wall with a non-shrinking mastic

Figure 7 – Type DA Duct Seal
(Note Typical fire damper detail is also adequate provided gaps are sealed with non-setting flexible mastic)
Figure 8 – Type DB Duct Seal
(Note Typical fire damper detail is also adequate provided flange is sealed with non-setting flexible mastic)

Figure 9 – Type DC Duct Seal
(Note Typical fire damper detail is also adequate for fire-rated walls provided flange is sealed with non-setting flexible mastic)